// InflaterHuffmanTree.cs // Copyright (C) 2001 Mike Krueger // // This file was translated from java, it was part of the GNU Classpath // Copyright (C) 2001 Free Software Foundation, Inc. // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License // as published by the Free Software Foundation; either version 2 // of the License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. // // Linking this library statically or dynamically with other modules is // making a combined work based on this library. Thus, the terms and // conditions of the GNU General Public License cover the whole // combination. // // As a special exception, the copyright holders of this library give you // permission to link this library with independent modules to produce an // executable, regardless of the license terms of these independent // modules, and to copy and distribute the resulting executable under // terms of your choice, provided that you also meet, for each linked // independent module, the terms and conditions of the license of that // module. An independent module is a module which is not derived from // or based on this library. If you modify this library, you may extend // this exception to your version of the library, but you are not // obligated to do so. If you do not wish to do so, delete this // exception statement from your version. using System; using PdfSharp.SharpZipLib.Zip.Compression.Streams; namespace PdfSharp.SharpZipLib.Zip.Compression { /// /// Huffman tree used for inflation /// internal class InflaterHuffmanTree { static int MAX_BITLEN = 15; short[] tree; /// /// Literal length tree /// public static InflaterHuffmanTree defLitLenTree; /// /// Distance tree /// public static InflaterHuffmanTree defDistTree; static InflaterHuffmanTree() { try { byte[] codeLengths = new byte[288]; int i = 0; while (i < 144) { codeLengths[i++] = 8; } while (i < 256) { codeLengths[i++] = 9; } while (i < 280) { codeLengths[i++] = 7; } while (i < 288) { codeLengths[i++] = 8; } defLitLenTree = new InflaterHuffmanTree(codeLengths); codeLengths = new byte[32]; i = 0; while (i < 32) { codeLengths[i++] = 5; } defDistTree = new InflaterHuffmanTree(codeLengths); } catch (Exception) { throw new SharpZipBaseException("InflaterHuffmanTree: static tree length illegal"); } } /// /// Constructs a Huffman tree from the array of code lengths. /// /// /// the array of code lengths /// public InflaterHuffmanTree(byte[] codeLengths) { BuildTree(codeLengths); } void BuildTree(byte[] codeLengths) { int[] blCount = new int[MAX_BITLEN + 1]; int[] nextCode = new int[MAX_BITLEN + 1]; for (int i = 0; i < codeLengths.Length; i++) { int bits = codeLengths[i]; if (bits > 0) { blCount[bits]++; } } int code = 0; int treeSize = 512; for (int bits = 1; bits <= MAX_BITLEN; bits++) { nextCode[bits] = code; code += blCount[bits] << (16 - bits); if (bits >= 10) { /* We need an extra table for bit lengths >= 10. */ int start = nextCode[bits] & 0x1ff80; int end = code & 0x1ff80; treeSize += (end - start) >> (16 - bits); } } /* -jr comment this out! doesn't work for dynamic trees and pkzip 2.04g if (code != 65536) { throw new SharpZipBaseException("Code lengths don't add up properly."); } */ /* Now create and fill the extra tables from longest to shortest * bit len. This way the sub trees will be aligned. */ tree = new short[treeSize]; int treePtr = 512; for (int bits = MAX_BITLEN; bits >= 10; bits--) { int end = code & 0x1ff80; code -= blCount[bits] << (16 - bits); int start = code & 0x1ff80; for (int i = start; i < end; i += 1 << 7) { tree[DeflaterHuffman.BitReverse(i)] = (short)((-treePtr << 4) | bits); treePtr += 1 << (bits - 9); } } for (int i = 0; i < codeLengths.Length; i++) { int bits = codeLengths[i]; if (bits == 0) { continue; } code = nextCode[bits]; int revcode = DeflaterHuffman.BitReverse(code); if (bits <= 9) { do { tree[revcode] = (short)((i << 4) | bits); revcode += 1 << bits; } while (revcode < 512); } else { int subTree = tree[revcode & 511]; int treeLen = 1 << (subTree & 15); subTree = -(subTree >> 4); do { tree[subTree | (revcode >> 9)] = (short)((i << 4) | bits); revcode += 1 << bits; } while (revcode < treeLen); } nextCode[bits] = code + (1 << (16 - bits)); } } /// /// Reads the next symbol from input. The symbol is encoded using the /// huffman tree. /// /// /// input the input source. /// /// /// the next symbol, or -1 if not enough input is available. /// public int GetSymbol(StreamManipulator input) { int lookahead, symbol; if ((lookahead = input.PeekBits(9)) >= 0) { if ((symbol = tree[lookahead]) >= 0) { input.DropBits(symbol & 15); return symbol >> 4; } int subtree = -(symbol >> 4); int bitlen = symbol & 15; if ((lookahead = input.PeekBits(bitlen)) >= 0) { symbol = tree[subtree | (lookahead >> 9)]; input.DropBits(symbol & 15); return symbol >> 4; } else { int bits = input.AvailableBits; lookahead = input.PeekBits(bits); symbol = tree[subtree | (lookahead >> 9)]; if ((symbol & 15) <= bits) { input.DropBits(symbol & 15); return symbol >> 4; } else { return -1; } } } else { int bits = input.AvailableBits; lookahead = input.PeekBits(bits); symbol = tree[lookahead]; if (symbol >= 0 && (symbol & 15) <= bits) { input.DropBits(symbol & 15); return symbol >> 4; } else { return -1; } } } } }