1000 lines
34 KiB
C#
1000 lines
34 KiB
C#
// DeflaterHuffman.cs
|
|
//
|
|
// Copyright (C) 2001 Mike Krueger
|
|
// Copyright (C) 2004 John Reilly
|
|
//
|
|
// This file was translated from java, it was part of the GNU Classpath
|
|
// Copyright (C) 2001 Free Software Foundation, Inc.
|
|
//
|
|
// This program is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License
|
|
// as published by the Free Software Foundation; either version 2
|
|
// of the License, or (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program; if not, write to the Free Software
|
|
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
//
|
|
// Linking this library statically or dynamically with other modules is
|
|
// making a combined work based on this library. Thus, the terms and
|
|
// conditions of the GNU General Public License cover the whole
|
|
// combination.
|
|
//
|
|
// As a special exception, the copyright holders of this library give you
|
|
// permission to link this library with independent modules to produce an
|
|
// executable, regardless of the license terms of these independent
|
|
// modules, and to copy and distribute the resulting executable under
|
|
// terms of your choice, provided that you also meet, for each linked
|
|
// independent module, the terms and conditions of the license of that
|
|
// module. An independent module is a module which is not derived from
|
|
// or based on this library. If you modify this library, you may extend
|
|
// this exception to your version of the library, but you are not
|
|
// obligated to do so. If you do not wish to do so, delete this
|
|
// exception statement from your version.
|
|
|
|
using System;
|
|
|
|
// ReSharper disable RedundantThisQualifier
|
|
|
|
namespace PdfSharp.SharpZipLib.Zip.Compression
|
|
{
|
|
|
|
/// <summary>
|
|
/// This is the DeflaterHuffman class.
|
|
///
|
|
/// This class is <i>not</i> thread safe. This is inherent in the API, due
|
|
/// to the split of Deflate and SetInput.
|
|
///
|
|
/// author of the original java version : Jochen Hoenicke
|
|
/// </summary>
|
|
internal class DeflaterHuffman
|
|
{
|
|
const int BUFSIZE = 1 << (DeflaterConstants.DEFAULT_MEM_LEVEL + 6);
|
|
const int LITERAL_NUM = 286;
|
|
|
|
// Number of distance codes
|
|
const int DIST_NUM = 30;
|
|
// Number of codes used to transfer bit lengths
|
|
const int BITLEN_NUM = 19;
|
|
|
|
// repeat previous bit length 3-6 times (2 bits of repeat count)
|
|
const int REP_3_6 = 16;
|
|
// repeat a zero length 3-10 times (3 bits of repeat count)
|
|
const int REP_3_10 = 17;
|
|
// repeat a zero length 11-138 times (7 bits of repeat count)
|
|
const int REP_11_138 = 18;
|
|
|
|
const int EOF_SYMBOL = 256;
|
|
|
|
// The lengths of the bit length codes are sent in order of decreasing
|
|
// probability, to avoid transmitting the lengths for unused bit length codes.
|
|
static readonly int[] BL_ORDER = { 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 };
|
|
|
|
static readonly byte[] bit4Reverse = {
|
|
0,
|
|
8,
|
|
4,
|
|
12,
|
|
2,
|
|
10,
|
|
6,
|
|
14,
|
|
1,
|
|
9,
|
|
5,
|
|
13,
|
|
3,
|
|
11,
|
|
7,
|
|
15
|
|
};
|
|
|
|
static short[] staticLCodes;
|
|
static byte[] staticLLength;
|
|
static short[] staticDCodes;
|
|
static byte[] staticDLength;
|
|
|
|
class Tree
|
|
{
|
|
#region Instance Fields
|
|
public short[] freqs;
|
|
|
|
public byte[] length;
|
|
|
|
public int minNumCodes;
|
|
|
|
public int numCodes;
|
|
|
|
short[] codes;
|
|
int[] bl_counts;
|
|
int maxLength;
|
|
DeflaterHuffman dh;
|
|
#endregion
|
|
|
|
#region Constructors
|
|
public Tree(DeflaterHuffman dh, int elems, int minCodes, int maxLength)
|
|
{
|
|
this.dh = dh;
|
|
this.minNumCodes = minCodes;
|
|
this.maxLength = maxLength;
|
|
freqs = new short[elems];
|
|
bl_counts = new int[maxLength];
|
|
}
|
|
|
|
#endregion
|
|
|
|
/// <summary>
|
|
/// Resets the internal state of the tree
|
|
/// </summary>
|
|
public void Reset()
|
|
{
|
|
for (int i = 0; i < freqs.Length; i++)
|
|
{
|
|
freqs[i] = 0;
|
|
}
|
|
codes = null;
|
|
length = null;
|
|
}
|
|
|
|
public void WriteSymbol(int code)
|
|
{
|
|
// if (DeflaterConstants.DEBUGGING) {
|
|
// freqs[code]--;
|
|
// // Console.Write("writeSymbol("+freqs.length+","+code+"): ");
|
|
// }
|
|
dh.pending.WriteBits(codes[code] & 0xffff, length[code]);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Check that all frequencies are zero
|
|
/// </summary>
|
|
/// <exception cref="SharpZipBaseException">
|
|
/// At least one frequency is non-zero
|
|
/// </exception>
|
|
public void CheckEmpty()
|
|
{
|
|
bool empty = true;
|
|
for (int i = 0; i < freqs.Length; i++)
|
|
{
|
|
if (freqs[i] != 0)
|
|
{
|
|
//Console.WriteLine("freqs[" + i + "] == " + freqs[i]);
|
|
empty = false;
|
|
}
|
|
}
|
|
|
|
if (!empty)
|
|
{
|
|
throw new SharpZipBaseException("!Empty");
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Set static codes and length
|
|
/// </summary>
|
|
/// <param name="staticCodes">new codes</param>
|
|
/// <param name="staticLengths">length for new codes</param>
|
|
public void SetStaticCodes(short[] staticCodes, byte[] staticLengths)
|
|
{
|
|
codes = staticCodes;
|
|
length = staticLengths;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Build dynamic codes and lengths
|
|
/// </summary>
|
|
public void BuildCodes()
|
|
{
|
|
int numSymbols = freqs.Length;
|
|
int[] nextCode = new int[maxLength];
|
|
int code = 0;
|
|
|
|
codes = new short[freqs.Length];
|
|
|
|
// if (DeflaterConstants.DEBUGGING) {
|
|
// //Console.WriteLine("buildCodes: "+freqs.Length);
|
|
// }
|
|
|
|
for (int bits = 0; bits < maxLength; bits++)
|
|
{
|
|
nextCode[bits] = code;
|
|
code += bl_counts[bits] << (15 - bits);
|
|
|
|
// if (DeflaterConstants.DEBUGGING) {
|
|
// //Console.WriteLine("bits: " + ( bits + 1) + " count: " + bl_counts[bits]
|
|
// +" nextCode: "+code);
|
|
// }
|
|
}
|
|
|
|
#if DebugDeflation
|
|
if ( DeflaterConstants.DEBUGGING && (code != 65536) )
|
|
{
|
|
throw new SharpZipBaseException("Inconsistent bl_counts!");
|
|
}
|
|
#endif
|
|
for (int i = 0; i < numCodes; i++)
|
|
{
|
|
int bits = length[i];
|
|
if (bits > 0)
|
|
{
|
|
|
|
// if (DeflaterConstants.DEBUGGING) {
|
|
// //Console.WriteLine("codes["+i+"] = rev(" + nextCode[bits-1]+"),
|
|
// +bits);
|
|
// }
|
|
|
|
codes[i] = BitReverse(nextCode[bits - 1]);
|
|
nextCode[bits - 1] += 1 << (16 - bits);
|
|
}
|
|
}
|
|
}
|
|
|
|
public void BuildTree()
|
|
{
|
|
int numSymbols = freqs.Length;
|
|
|
|
/* heap is a priority queue, sorted by frequency, least frequent
|
|
* nodes first. The heap is a binary tree, with the property, that
|
|
* the parent node is smaller than both child nodes. This assures
|
|
* that the smallest node is the first parent.
|
|
*
|
|
* The binary tree is encoded in an array: 0 is root node and
|
|
* the nodes 2*n+1, 2*n+2 are the child nodes of node n.
|
|
*/
|
|
int[] heap = new int[numSymbols];
|
|
int heapLen = 0;
|
|
int maxCode = 0;
|
|
for (int n = 0; n < numSymbols; n++)
|
|
{
|
|
int freq = freqs[n];
|
|
if (freq != 0)
|
|
{
|
|
// Insert n into heap
|
|
int pos = heapLen++;
|
|
int ppos;
|
|
while (pos > 0 && freqs[heap[ppos = (pos - 1) / 2]] > freq)
|
|
{
|
|
heap[pos] = heap[ppos];
|
|
pos = ppos;
|
|
}
|
|
heap[pos] = n;
|
|
|
|
maxCode = n;
|
|
}
|
|
}
|
|
|
|
/* We could encode a single literal with 0 bits but then we
|
|
* don't see the literals. Therefore we force at least two
|
|
* literals to avoid this case. We don't care about order in
|
|
* this case, both literals get a 1 bit code.
|
|
*/
|
|
while (heapLen < 2)
|
|
{
|
|
int node = maxCode < 2 ? ++maxCode : 0;
|
|
heap[heapLen++] = node;
|
|
}
|
|
|
|
numCodes = Math.Max(maxCode + 1, minNumCodes);
|
|
|
|
int numLeafs = heapLen;
|
|
int[] childs = new int[4 * heapLen - 2];
|
|
int[] values = new int[2 * heapLen - 1];
|
|
int numNodes = numLeafs;
|
|
for (int i = 0; i < heapLen; i++)
|
|
{
|
|
int node = heap[i];
|
|
childs[2 * i] = node;
|
|
childs[2 * i + 1] = -1;
|
|
values[i] = freqs[node] << 8;
|
|
heap[i] = i;
|
|
}
|
|
|
|
/* Construct the Huffman tree by repeatedly combining the least two
|
|
* frequent nodes.
|
|
*/
|
|
do
|
|
{
|
|
int first = heap[0];
|
|
int last = heap[--heapLen];
|
|
|
|
// Propagate the hole to the leafs of the heap
|
|
int ppos = 0;
|
|
int path = 1;
|
|
|
|
while (path < heapLen)
|
|
{
|
|
if (path + 1 < heapLen && values[heap[path]] > values[heap[path + 1]])
|
|
{
|
|
path++;
|
|
}
|
|
|
|
heap[ppos] = heap[path];
|
|
ppos = path;
|
|
path = path * 2 + 1;
|
|
}
|
|
|
|
/* Now propagate the last element down along path. Normally
|
|
* it shouldn't go too deep.
|
|
*/
|
|
int lastVal = values[last];
|
|
while ((path = ppos) > 0 && values[heap[ppos = (path - 1) / 2]] > lastVal)
|
|
{
|
|
heap[path] = heap[ppos];
|
|
}
|
|
heap[path] = last;
|
|
|
|
|
|
int second = heap[0];
|
|
|
|
// Create a new node father of first and second
|
|
last = numNodes++;
|
|
childs[2 * last] = first;
|
|
childs[2 * last + 1] = second;
|
|
int mindepth = Math.Min(values[first] & 0xff, values[second] & 0xff);
|
|
values[last] = lastVal = values[first] + values[second] - mindepth + 1;
|
|
|
|
// Again, propagate the hole to the leafs
|
|
ppos = 0;
|
|
path = 1;
|
|
|
|
while (path < heapLen)
|
|
{
|
|
if (path + 1 < heapLen && values[heap[path]] > values[heap[path + 1]])
|
|
{
|
|
path++;
|
|
}
|
|
|
|
heap[ppos] = heap[path];
|
|
ppos = path;
|
|
path = ppos * 2 + 1;
|
|
}
|
|
|
|
// Now propagate the new element down along path
|
|
while ((path = ppos) > 0 && values[heap[ppos = (path - 1) / 2]] > lastVal)
|
|
{
|
|
heap[path] = heap[ppos];
|
|
}
|
|
heap[path] = last;
|
|
} while (heapLen > 1);
|
|
|
|
if (heap[0] != childs.Length / 2 - 1)
|
|
{
|
|
throw new SharpZipBaseException("Heap invariant violated");
|
|
}
|
|
|
|
BuildLength(childs);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Get encoded length
|
|
/// </summary>
|
|
/// <returns>Encoded length, the sum of frequencies * lengths</returns>
|
|
public int GetEncodedLength()
|
|
{
|
|
int len = 0;
|
|
for (int i = 0; i < freqs.Length; i++)
|
|
{
|
|
len += freqs[i] * length[i];
|
|
}
|
|
return len;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Scan a literal or distance tree to determine the frequencies of the codes
|
|
/// in the bit length tree.
|
|
/// </summary>
|
|
public void CalcBLFreq(Tree blTree)
|
|
{
|
|
int max_count; /* max repeat count */
|
|
int min_count; /* min repeat count */
|
|
int count; /* repeat count of the current code */
|
|
int curlen = -1; /* length of current code */
|
|
|
|
int i = 0;
|
|
while (i < numCodes)
|
|
{
|
|
count = 1;
|
|
int nextlen = length[i];
|
|
if (nextlen == 0)
|
|
{
|
|
max_count = 138;
|
|
min_count = 3;
|
|
}
|
|
else
|
|
{
|
|
max_count = 6;
|
|
min_count = 3;
|
|
if (curlen != nextlen)
|
|
{
|
|
blTree.freqs[nextlen]++;
|
|
count = 0;
|
|
}
|
|
}
|
|
curlen = nextlen;
|
|
i++;
|
|
|
|
while (i < numCodes && curlen == length[i])
|
|
{
|
|
i++;
|
|
if (++count >= max_count)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (count < min_count)
|
|
{
|
|
blTree.freqs[curlen] += (short)count;
|
|
}
|
|
else if (curlen != 0)
|
|
{
|
|
blTree.freqs[REP_3_6]++;
|
|
}
|
|
else if (count <= 10)
|
|
{
|
|
blTree.freqs[REP_3_10]++;
|
|
}
|
|
else
|
|
{
|
|
blTree.freqs[REP_11_138]++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Write tree values
|
|
/// </summary>
|
|
/// <param name="blTree">Tree to write</param>
|
|
public void WriteTree(Tree blTree)
|
|
{
|
|
int max_count; // max repeat count
|
|
int min_count; // min repeat count
|
|
int count; // repeat count of the current code
|
|
int curlen = -1; // length of current code
|
|
|
|
int i = 0;
|
|
while (i < numCodes)
|
|
{
|
|
count = 1;
|
|
int nextlen = length[i];
|
|
if (nextlen == 0)
|
|
{
|
|
max_count = 138;
|
|
min_count = 3;
|
|
}
|
|
else
|
|
{
|
|
max_count = 6;
|
|
min_count = 3;
|
|
if (curlen != nextlen)
|
|
{
|
|
blTree.WriteSymbol(nextlen);
|
|
count = 0;
|
|
}
|
|
}
|
|
curlen = nextlen;
|
|
i++;
|
|
|
|
while (i < numCodes && curlen == length[i])
|
|
{
|
|
i++;
|
|
if (++count >= max_count)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (count < min_count)
|
|
{
|
|
while (count-- > 0)
|
|
{
|
|
blTree.WriteSymbol(curlen);
|
|
}
|
|
}
|
|
else if (curlen != 0)
|
|
{
|
|
blTree.WriteSymbol(REP_3_6);
|
|
dh.pending.WriteBits(count - 3, 2);
|
|
}
|
|
else if (count <= 10)
|
|
{
|
|
blTree.WriteSymbol(REP_3_10);
|
|
dh.pending.WriteBits(count - 3, 3);
|
|
}
|
|
else
|
|
{
|
|
blTree.WriteSymbol(REP_11_138);
|
|
dh.pending.WriteBits(count - 11, 7);
|
|
}
|
|
}
|
|
}
|
|
|
|
void BuildLength(int[] childs)
|
|
{
|
|
this.length = new byte[freqs.Length];
|
|
int numNodes = childs.Length / 2;
|
|
int numLeafs = (numNodes + 1) / 2;
|
|
int overflow = 0;
|
|
|
|
for (int i = 0; i < maxLength; i++)
|
|
{
|
|
bl_counts[i] = 0;
|
|
}
|
|
|
|
// First calculate optimal bit lengths
|
|
int[] lengths = new int[numNodes];
|
|
lengths[numNodes - 1] = 0;
|
|
|
|
for (int i = numNodes - 1; i >= 0; i--)
|
|
{
|
|
if (childs[2 * i + 1] != -1)
|
|
{
|
|
int bitLength = lengths[i] + 1;
|
|
if (bitLength > maxLength)
|
|
{
|
|
bitLength = maxLength;
|
|
overflow++;
|
|
}
|
|
lengths[childs[2 * i]] = lengths[childs[2 * i + 1]] = bitLength;
|
|
}
|
|
else
|
|
{
|
|
// A leaf node
|
|
int bitLength = lengths[i];
|
|
bl_counts[bitLength - 1]++;
|
|
this.length[childs[2 * i]] = (byte)lengths[i];
|
|
}
|
|
}
|
|
|
|
// if (DeflaterConstants.DEBUGGING) {
|
|
// //Console.WriteLine("Tree "+freqs.Length+" lengths:");
|
|
// for (int i=0; i < numLeafs; i++) {
|
|
// //Console.WriteLine("Node "+childs[2*i]+" freq: "+freqs[childs[2*i]]
|
|
// + " len: "+length[childs[2*i]]);
|
|
// }
|
|
// }
|
|
|
|
if (overflow == 0)
|
|
{
|
|
return;
|
|
}
|
|
|
|
int incrBitLen = maxLength - 1;
|
|
do
|
|
{
|
|
// Find the first bit length which could increase:
|
|
while (bl_counts[--incrBitLen] == 0)
|
|
;
|
|
|
|
// Move this node one down and remove a corresponding
|
|
// number of overflow nodes.
|
|
do
|
|
{
|
|
bl_counts[incrBitLen]--;
|
|
bl_counts[++incrBitLen]++;
|
|
overflow -= 1 << (maxLength - 1 - incrBitLen);
|
|
} while (overflow > 0 && incrBitLen < maxLength - 1);
|
|
} while (overflow > 0);
|
|
|
|
/* We may have overshot above. Move some nodes from maxLength to
|
|
* maxLength-1 in that case.
|
|
*/
|
|
bl_counts[maxLength - 1] += overflow;
|
|
bl_counts[maxLength - 2] -= overflow;
|
|
|
|
/* Now recompute all bit lengths, scanning in increasing
|
|
* frequency. It is simpler to reconstruct all lengths instead of
|
|
* fixing only the wrong ones. This idea is taken from 'ar'
|
|
* written by Haruhiko Okumura.
|
|
*
|
|
* The nodes were inserted with decreasing frequency into the childs
|
|
* array.
|
|
*/
|
|
int nodePtr = 2 * numLeafs;
|
|
for (int bits = maxLength; bits != 0; bits--)
|
|
{
|
|
int n = bl_counts[bits - 1];
|
|
while (n > 0)
|
|
{
|
|
int childPtr = 2 * childs[nodePtr++];
|
|
if (childs[childPtr + 1] == -1)
|
|
{
|
|
// We found another leaf
|
|
length[childs[childPtr]] = (byte)bits;
|
|
n--;
|
|
}
|
|
}
|
|
}
|
|
// if (DeflaterConstants.DEBUGGING) {
|
|
// //Console.WriteLine("*** After overflow elimination. ***");
|
|
// for (int i=0; i < numLeafs; i++) {
|
|
// //Console.WriteLine("Node "+childs[2*i]+" freq: "+freqs[childs[2*i]]
|
|
// + " len: "+length[childs[2*i]]);
|
|
// }
|
|
// }
|
|
}
|
|
|
|
}
|
|
|
|
#region Instance Fields
|
|
/// <summary>
|
|
/// Pending buffer to use
|
|
/// </summary>
|
|
public DeflaterPending pending;
|
|
|
|
Tree literalTree;
|
|
Tree distTree;
|
|
Tree blTree;
|
|
|
|
// Buffer for distances
|
|
short[] d_buf;
|
|
byte[] l_buf;
|
|
int last_lit;
|
|
int extra_bits;
|
|
#endregion
|
|
|
|
static DeflaterHuffman()
|
|
{
|
|
// See RFC 1951 3.2.6
|
|
// Literal codes
|
|
staticLCodes = new short[LITERAL_NUM];
|
|
staticLLength = new byte[LITERAL_NUM];
|
|
|
|
int i = 0;
|
|
while (i < 144)
|
|
{
|
|
staticLCodes[i] = BitReverse((0x030 + i) << 8);
|
|
staticLLength[i++] = 8;
|
|
}
|
|
|
|
while (i < 256)
|
|
{
|
|
staticLCodes[i] = BitReverse((0x190 - 144 + i) << 7);
|
|
staticLLength[i++] = 9;
|
|
}
|
|
|
|
while (i < 280)
|
|
{
|
|
staticLCodes[i] = BitReverse((0x000 - 256 + i) << 9);
|
|
staticLLength[i++] = 7;
|
|
}
|
|
|
|
while (i < LITERAL_NUM)
|
|
{
|
|
staticLCodes[i] = BitReverse((0x0c0 - 280 + i) << 8);
|
|
staticLLength[i++] = 8;
|
|
}
|
|
|
|
// Distance codes
|
|
staticDCodes = new short[DIST_NUM];
|
|
staticDLength = new byte[DIST_NUM];
|
|
for (i = 0; i < DIST_NUM; i++)
|
|
{
|
|
staticDCodes[i] = BitReverse(i << 11);
|
|
staticDLength[i] = 5;
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Construct instance with pending buffer
|
|
/// </summary>
|
|
/// <param name="pending">Pending buffer to use</param>
|
|
public DeflaterHuffman(DeflaterPending pending)
|
|
{
|
|
this.pending = pending;
|
|
|
|
literalTree = new Tree(this, LITERAL_NUM, 257, 15);
|
|
distTree = new Tree(this, DIST_NUM, 1, 15);
|
|
blTree = new Tree(this, BITLEN_NUM, 4, 7);
|
|
|
|
d_buf = new short[BUFSIZE];
|
|
l_buf = new byte[BUFSIZE];
|
|
}
|
|
|
|
/// <summary>
|
|
/// Reset internal state
|
|
/// </summary>
|
|
public void Reset()
|
|
{
|
|
last_lit = 0;
|
|
extra_bits = 0;
|
|
literalTree.Reset();
|
|
distTree.Reset();
|
|
blTree.Reset();
|
|
}
|
|
|
|
/// <summary>
|
|
/// Write all trees to pending buffer
|
|
/// </summary>
|
|
/// <param name="blTreeCodes">The number/rank of treecodes to send.</param>
|
|
public void SendAllTrees(int blTreeCodes)
|
|
{
|
|
blTree.BuildCodes();
|
|
literalTree.BuildCodes();
|
|
distTree.BuildCodes();
|
|
pending.WriteBits(literalTree.numCodes - 257, 5);
|
|
pending.WriteBits(distTree.numCodes - 1, 5);
|
|
pending.WriteBits(blTreeCodes - 4, 4);
|
|
for (int rank = 0; rank < blTreeCodes; rank++)
|
|
{
|
|
pending.WriteBits(blTree.length[BL_ORDER[rank]], 3);
|
|
}
|
|
literalTree.WriteTree(blTree);
|
|
distTree.WriteTree(blTree);
|
|
|
|
#if DebugDeflation
|
|
if (DeflaterConstants.DEBUGGING) {
|
|
blTree.CheckEmpty();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/// <summary>
|
|
/// Compress current buffer writing data to pending buffer
|
|
/// </summary>
|
|
public void CompressBlock()
|
|
{
|
|
for (int i = 0; i < last_lit; i++)
|
|
{
|
|
int litlen = l_buf[i] & 0xff;
|
|
int dist = d_buf[i];
|
|
if (dist-- != 0)
|
|
{
|
|
// if (DeflaterConstants.DEBUGGING) {
|
|
// Console.Write("["+(dist+1)+","+(litlen+3)+"]: ");
|
|
// }
|
|
|
|
int lc = Lcode(litlen);
|
|
literalTree.WriteSymbol(lc);
|
|
|
|
int bits = (lc - 261) / 4;
|
|
if (bits > 0 && bits <= 5)
|
|
{
|
|
pending.WriteBits(litlen & ((1 << bits) - 1), bits);
|
|
}
|
|
|
|
int dc = Dcode(dist);
|
|
distTree.WriteSymbol(dc);
|
|
|
|
bits = dc / 2 - 1;
|
|
if (bits > 0)
|
|
{
|
|
pending.WriteBits(dist & ((1 << bits) - 1), bits);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// if (DeflaterConstants.DEBUGGING) {
|
|
// if (litlen > 32 && litlen < 127) {
|
|
// Console.Write("("+(char)litlen+"): ");
|
|
// } else {
|
|
// Console.Write("{"+litlen+"}: ");
|
|
// }
|
|
// }
|
|
literalTree.WriteSymbol(litlen);
|
|
}
|
|
}
|
|
|
|
#if DebugDeflation
|
|
if (DeflaterConstants.DEBUGGING) {
|
|
Console.Write("EOF: ");
|
|
}
|
|
#endif
|
|
literalTree.WriteSymbol(EOF_SYMBOL);
|
|
|
|
#if DebugDeflation
|
|
if (DeflaterConstants.DEBUGGING) {
|
|
literalTree.CheckEmpty();
|
|
distTree.CheckEmpty();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/// <summary>
|
|
/// Flush block to output with no compression
|
|
/// </summary>
|
|
/// <param name="stored">Data to write</param>
|
|
/// <param name="storedOffset">Index of first byte to write</param>
|
|
/// <param name="storedLength">Count of bytes to write</param>
|
|
/// <param name="lastBlock">True if this is the last block</param>
|
|
public void FlushStoredBlock(byte[] stored, int storedOffset, int storedLength, bool lastBlock)
|
|
{
|
|
#if DebugDeflation
|
|
// if (DeflaterConstants.DEBUGGING) {
|
|
// //Console.WriteLine("Flushing stored block "+ storedLength);
|
|
// }
|
|
#endif
|
|
pending.WriteBits((DeflaterConstants.STORED_BLOCK << 1) + (lastBlock ? 1 : 0), 3);
|
|
pending.AlignToByte();
|
|
pending.WriteShort(storedLength);
|
|
pending.WriteShort(~storedLength);
|
|
pending.WriteBlock(stored, storedOffset, storedLength);
|
|
Reset();
|
|
}
|
|
|
|
/// <summary>
|
|
/// Flush block to output with compression
|
|
/// </summary>
|
|
/// <param name="stored">Data to flush</param>
|
|
/// <param name="storedOffset">Index of first byte to flush</param>
|
|
/// <param name="storedLength">Count of bytes to flush</param>
|
|
/// <param name="lastBlock">True if this is the last block</param>
|
|
public void FlushBlock(byte[] stored, int storedOffset, int storedLength, bool lastBlock)
|
|
{
|
|
literalTree.freqs[EOF_SYMBOL]++;
|
|
|
|
// Build trees
|
|
literalTree.BuildTree();
|
|
distTree.BuildTree();
|
|
|
|
// Calculate bitlen frequency
|
|
literalTree.CalcBLFreq(blTree);
|
|
distTree.CalcBLFreq(blTree);
|
|
|
|
// Build bitlen tree
|
|
blTree.BuildTree();
|
|
|
|
int blTreeCodes = 4;
|
|
for (int i = 18; i > blTreeCodes; i--)
|
|
{
|
|
if (blTree.length[BL_ORDER[i]] > 0)
|
|
{
|
|
blTreeCodes = i + 1;
|
|
}
|
|
}
|
|
int opt_len = 14 + blTreeCodes * 3 + blTree.GetEncodedLength() +
|
|
literalTree.GetEncodedLength() + distTree.GetEncodedLength() +
|
|
extra_bits;
|
|
|
|
int static_len = extra_bits;
|
|
for (int i = 0; i < LITERAL_NUM; i++)
|
|
{
|
|
static_len += literalTree.freqs[i] * staticLLength[i];
|
|
}
|
|
for (int i = 0; i < DIST_NUM; i++)
|
|
{
|
|
static_len += distTree.freqs[i] * staticDLength[i];
|
|
}
|
|
if (opt_len >= static_len)
|
|
{
|
|
// Force static trees
|
|
opt_len = static_len;
|
|
}
|
|
|
|
if (storedOffset >= 0 && storedLength + 4 < opt_len >> 3)
|
|
{
|
|
// Store Block
|
|
|
|
// if (DeflaterConstants.DEBUGGING) {
|
|
// //Console.WriteLine("Storing, since " + storedLength + " < " + opt_len
|
|
// + " <= " + static_len);
|
|
// }
|
|
FlushStoredBlock(stored, storedOffset, storedLength, lastBlock);
|
|
}
|
|
else if (opt_len == static_len)
|
|
{
|
|
// Encode with static tree
|
|
pending.WriteBits((DeflaterConstants.STATIC_TREES << 1) + (lastBlock ? 1 : 0), 3);
|
|
literalTree.SetStaticCodes(staticLCodes, staticLLength);
|
|
distTree.SetStaticCodes(staticDCodes, staticDLength);
|
|
CompressBlock();
|
|
Reset();
|
|
}
|
|
else
|
|
{
|
|
// Encode with dynamic tree
|
|
pending.WriteBits((DeflaterConstants.DYN_TREES << 1) + (lastBlock ? 1 : 0), 3);
|
|
SendAllTrees(blTreeCodes);
|
|
CompressBlock();
|
|
Reset();
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Get value indicating if internal buffer is full
|
|
/// </summary>
|
|
/// <returns>true if buffer is full</returns>
|
|
public bool IsFull()
|
|
{
|
|
return last_lit >= BUFSIZE;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Add literal to buffer
|
|
/// </summary>
|
|
/// <param name="literal">Literal value to add to buffer.</param>
|
|
/// <returns>Value indicating internal buffer is full</returns>
|
|
public bool TallyLit(int literal)
|
|
{
|
|
// if (DeflaterConstants.DEBUGGING) {
|
|
// if (lit > 32 && lit < 127) {
|
|
// //Console.WriteLine("("+(char)lit+")");
|
|
// } else {
|
|
// //Console.WriteLine("{"+lit+"}");
|
|
// }
|
|
// }
|
|
d_buf[last_lit] = 0;
|
|
l_buf[last_lit++] = (byte)literal;
|
|
literalTree.freqs[literal]++;
|
|
return IsFull();
|
|
}
|
|
|
|
/// <summary>
|
|
/// Add distance code and length to literal and distance trees
|
|
/// </summary>
|
|
/// <param name="distance">Distance code</param>
|
|
/// <param name="length">Length</param>
|
|
/// <returns>Value indicating if internal buffer is full</returns>
|
|
public bool TallyDist(int distance, int length)
|
|
{
|
|
// if (DeflaterConstants.DEBUGGING) {
|
|
// //Console.WriteLine("[" + distance + "," + length + "]");
|
|
// }
|
|
|
|
d_buf[last_lit] = (short)distance;
|
|
l_buf[last_lit++] = (byte)(length - 3);
|
|
|
|
int lc = Lcode(length - 3);
|
|
literalTree.freqs[lc]++;
|
|
if (lc >= 265 && lc < 285)
|
|
{
|
|
extra_bits += (lc - 261) / 4;
|
|
}
|
|
|
|
int dc = Dcode(distance - 1);
|
|
distTree.freqs[dc]++;
|
|
if (dc >= 4)
|
|
{
|
|
extra_bits += dc / 2 - 1;
|
|
}
|
|
return IsFull();
|
|
}
|
|
|
|
|
|
/// <summary>
|
|
/// Reverse the bits of a 16 bit value.
|
|
/// </summary>
|
|
/// <param name="toReverse">Value to reverse bits</param>
|
|
/// <returns>Value with bits reversed</returns>
|
|
public static short BitReverse(int toReverse)
|
|
{
|
|
return (short)(bit4Reverse[toReverse & 0xF] << 12 |
|
|
bit4Reverse[(toReverse >> 4) & 0xF] << 8 |
|
|
bit4Reverse[(toReverse >> 8) & 0xF] << 4 |
|
|
bit4Reverse[toReverse >> 12]);
|
|
}
|
|
|
|
static int Lcode(int length)
|
|
{
|
|
if (length == 255)
|
|
{
|
|
return 285;
|
|
}
|
|
|
|
int code = 257;
|
|
while (length >= 8)
|
|
{
|
|
code += 4;
|
|
length >>= 1;
|
|
}
|
|
return code + length;
|
|
}
|
|
|
|
static int Dcode(int distance)
|
|
{
|
|
int code = 0;
|
|
while (distance >= 4)
|
|
{
|
|
code += 2;
|
|
distance >>= 1;
|
|
}
|
|
return code + distance;
|
|
}
|
|
}
|
|
}
|